Article 1218

Title of the article

STRUCTURAL OPTIMIZATION OF FUZZY REGRESSION MODELS WITH MINIMIZATION OF A FORECAST
ERROR ON A TRAINING AND TEST SAMPLE 

Authors

Popov Aleksandr Aleksandrovich, Doctor of engineering sciences, professor, sub-department of theoretical and applied informatics, Novosibirsk State Technical University (20 Karla Marksa avenue, Novosibirsk, Russia), a.popov@corp.nstu.ru
Kholdonov Abdurakhmon Abdulloevich, Postgraduate student, Novosibirsk State Technical University (20 Karla Marksa avenue, Novosibirsk, Russia), firuz_530_11_29@mail.ru

Index UDK

519.23

DOI

10.21685/2072-3059-2018-2-1

Abstract

Background. The paper considers the problem of string optimization of regression models within the concept of fuzzy systems (Fuzzy Systems). Structural optimization of regression models implies the solution of the problem of determining the model of optimal complexity. The model of optimal complexity has good generalizing abilities and does not carry the effect of retraining. Various criteria for selection of models are presented, which are based on splitting the sample into the training and test parts.
Materials and Methods. As a method of estimating unknown parameters, the least-squares method is used in the so-called global version. In this case, a joint evaluation of the whole set of unknown parameters is carried out. As rules systems, the Takagi-Sugeno model was used. When dividing the domain of input factors, trapezoidal membership functions were used. The problem of splitting a sample into a test and training part is proposed to be solved using the D-optimal experimental design method. At the same time, the main attention is paid to using the criterion of stability as a selection criterion for the models, which is a forecast error on the test
part of the sample.
Results. To evaluate the efficiency of this criterion and the procedure for splitting the sample into a training and test part, a computational experiment was performed. For the computational experiment, the corresponding software was developed.
The computational experiment was carried out on model data. The piecewise linear dependence on the input factor was used as the model of the data generator.
Discussion. The results of the computational experiments are given in separate tables and figures. The control of the accuracy of the tested models was based on the mean square error (MSE).
Conclusion. The computational experiment showed that the regularity criterion, based on the use of a test sample obtained by the procedure of optimal experiment planning, allows to determine the model of optimal complexity.

Key words

D-optimal plan, regularity criterion, least-squares method, centerof-mass method, Takagi-Sugeno model, fuzzy system, training sample, optimal experiment planning, parameter estimation, regression model, system of normal equations, test sample

 Download PDF
References

1. Takagi T., Sugeno M. IEEE Trans. on Systems, Man and Cybernetics. 1985, vol. 15, no. 1, pp. 116–132.
2. Babuska R. Fuzzy Modelling for Control. London; Boston: Kluwer Academic Publishers, 1998, 257 p.
3. Lilly J. H. Fuzzy Control and Identification. New Jersey: Wiley, 2010, 231 p.
4. Popov A. A. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Novosibirsk State Technical University]. 2000, no. 2 (19), pp. 49–57.
5. Kosko B. IEEE Transactions on Computers. 1994, vol. 43, no. 11, pp. 1329–1333.
6. Popov A. A., Bykhanov K. V. Proceedings – 9th Russian-Korean International Symposium on Science and Technology, KORUS-2005 sponsors: Novosibirsk State Technical University. Novosibirsk, 2005, pp. 687–692.
7. Pegat A. Nechetkoe modelirovanie i upravlenie: per. s angl. [Fuzzy modeling and control: translated from english]. 2nd ed. Moscow, 2013, 798 p.
8. Popov A. A. Nauchnyy vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Scientific bulletin of Novosibirsk State Technical University]. 2009, no. 3 (36), pp. 77–86.
9. Popov A. A. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Novosibirsk State Technical University]. 1996, no. 1, pp. 21–30.
10. Popov A. A. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Novosibirsk State Technical University]. 2003, no. 1 (31), pp. 85–90.
11. Popov A. A. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Novosibirsk State Technical University]. 2003, no. 1 (31), pp. 79–84.
12. Popov A. A. Optimal'noe planirovanie eksperimenta v zadachakh strukturnoy i parametricheskoy identifikatsii modeley mnogofaktornykh sistem [Optimal experimental design in the tasks of structural and parametric identification of multifactor systems models]. Novosibirsk, 2013, 296 p.
13. Bang-Yong Sohn. J. App1. Math. & Computing. 2005, vol. 18, no. 1-2, pp. 591–601.
14. Popov A. A., Sautin S. A. Nauchnyy vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Scientific bulletin of Novosibirsk State Technical University]. 2011, no. 1 (42), pp. 17–26.
15. Popov A. A., Sautin A. S. Nauchnyy vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Scientific bulletin of Novosibirsk State Technical University]. 2009, no. 4 (37), pp. 45–56.
16. Gul'tyaeva T. A., Popov A. A., Sautin A. S. Metody statisticheskogo obucheniya v zadachakh regressii i klassifikatsii: monografiya [Methods of statistical training in regression and classification problems: monograph]. Novosibirsk, 2016, 322 p.
17. Perel'man I. I. Avtomatika i telemekhanika [Automation and telemechanics]. 1983, no. 11, pp. 5–29.
18. Stepashko V. S., Kocherga Yu. L. Avtomatika [Automation]. 1985, no. 5, pp. 29–37.
19. Kocherga Yu. L. Avtomatika [Automation]. 1988, no. 4, pp. 34–38.
20. Sarychev A. P. Avtomatika [Automation]. 1990, no. 5, pp. 28–33.
21. Stepashko V. S. Avtomatika [Automation]. 1988, no. 6, pp. 75–82.
22. Popov A. A. Ispol'zovanie povtornykh vyborok v kriteriyakh selektsii modeley. Planirovanie eksperimenta, identifikatsiya, analiz i optimizatsiya mnogofaktornykh sistem [The use of repeated samples in the criteria for the selection of models. Experiment
planning, identification, analysis and optimization of multifactor systems]. Novosibirsk. elektrotekhn. in-t. Novosibirsk, 1990, pp. 82–88.
23. Lisitsin D. V. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Novosibirsk State Technical University]. 1996, no. 2, pp. 19–28.
24. Lisitsin D. V. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Novosibirsk State Technical University]. 1996, no. 1, pp. 13–20.
25. Popov A. A. Zavodskaya laboratoriya. Diagnostika materialov [Factory laboratory. Diagnostics of materials]. 1996, vol. 62, no. 10, pp. 42–44.
26. Popov A. A. Zavodskaya laboratoriya. Diagnostika materialov [Factory laboratory. Diagnostics of materials]. 1997, vol. 63, no. 1, pp. 49–53.
27. Popov A. A., Boboev Sh. A. Nauchnyy vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Scientific bulletin of Novosibirsk State Technical University]. 2016, no. 4, pp. 80–99.
28. Yurachkovskiy Yu. P., Groshkov A. N. Avtomatika [Automation]. 1979, no. 3, pp. 85–89.
29. Fedorov V. V. Aktivnye regressionnye eksperimenty. Matematicheskie metody planirovaniya eksperimenta [Active regression experiments. Mathematical methods for experiment planning]. Novosibirsk: Nauka. 1981, pp. 19–73.
30. Popov A. A. Sbornik nauchnykh trudov Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Novosibirsk State Technical University]. 1995, no. 1, pp. 39–44.
31. Popov A. A. Doklady Akademii nauk vysshey shkoly Rossii [Reports of the Academy of Sciences of Higher School of Russia]. 2008, no. 1 (10), pp. 45–55.

 

Дата создания: 11.12.2018 13:06
Дата обновления: 17.12.2018 08:38